Thanks to funding from the state of North Rhine-Westphalia as part of the Digital Hub, AMO GmbH will expand its technology infrastructure with a new building and additional cleanrooms. Start-ups and innovators will soon have access to cutting-edge micro and nanotechnology. Prof. Max Lemme, a member of JARA-FIT and JARA-CSD, is playing a key role in shaping the Digital Hub and supporting the start-ups.
Researchers from the Jülich Research Center and their international partners have, for the first time, discovered ring-shaped 3D magnetic structures, known as Hopfions, in a solid. The experiments were significantly led by the JARA-FIT scientists Prof. Stefan Blügel and Prof. Rafal Dunin-Borkowski.
Together, the two JARA partners Forschungszentrum Jülich and RWTH Aachen University, in cooperation with Heinrich Heine University Düsseldorf, are making a vision come true. A unique infrastructure for the characterization of materials is to be created in the "Ernst Ruska-Centrum 2.0" in the middle of the Rhenish mining area with the help of next-generation electron microscopes. In the presence of State Secretary Judith Pirscher from the Federal Ministry of Education and Research and Ina Brandes, Minister for Culture and Science of the State of North Rhine-Westphalia, the roofing ceremony for the new building was celebrated as a milestone on the way to this research infrastructure.
Under the umbrella of JARA Researchers at RWTH Aachen University and Forschungszentrum Jülich have uncovered important characteristics of double quantum dots in bilayer graphene, an increasingly promising material for possible applications in quantum technologies. The team has demonstrated near-perfect particle-hole symmetry in graphene quantum dots, which could lead to more efficient quantum information processing. The study has been published in Nature.
Scientists at Forschungszentrum Jülich have fabricated a new type of transistor from a germanium–tin alloy that has several advantages over conventional switching elements. The transistor thus appears to be a promising candidate for future low-power, high-performance chips, and possibly also for the development of future of quantum computers. JARA-FIT scientists Prof. Detlef Grützmacher and Prof. Joachim Knoch were involved in the development.
Since a few years now, the phyphox app is available for download in the app stores. With the help of the app, anyone's smartphone becomes a small physics laboratory. The application was invented by Prof. Christoph Stampfer (Director JARA-FIT) and Dr. Sebastian Staacks. The two developers have now been awarded the Georg Kerschensteiner Award for their app.
Professor Stephan Appelt, member of JARA-FIT and Chair of Macromolecular Chemistry at RWTH Aachen University and Forschungszentrum Jülich, has discovered a fundamentally new method for RASER-MRI (Radiofrequency Amplification by Stimulated Emission of Radiation). He has achieved this with the assistance of colleagues from RWTH, the Karlsruhe Institute of Technology, and the universities of Raleigh, Wayne State, and Harvard. The international research team has now published this new approach in magnetic resonance imaging in the journal Science Advances.
Physicists from Jülich, Marburg, Regensburg and Graz win ERC Synergy Grant for ultra-high spatial and temporal resolution imaging of electron orbitals.JARA-FIT member Prof. Stefan Tautz and his institute are significantly involved in the grant.
The so-called scalability of quantum bits is considered one of the biggest challenges in developing a quantum computer. Researchers at the JARA-FIT Institute for Quantum Information have now come a significant step closer to finding a solution. They succeeded in transferring electrons, the carriers of quantum information, over several micrometres on a quantum chip. Their "quantum bus" could be the key component to master the leap to millions of qubits.
With his scientific research, JARA-FIT Scientist Prof. Rainer Waser has revitalised the field of memristive devices and pushed it further towards application. His findings lay the scientific foundation for novel devices that could be used in future "neuromorphic" computers inspired by the human brain. The internationally renowned journal Advanced Electronic Materials has now paid a very special tribute to the much decorated pioneer, who conducts research and teaches at Forschungszentrum Jülich and RWTH Aachen University, and has published a special issue to celebrate his 65th birthday.
The app "phyphox" turns your smartphone into a physics lab. With the newly released version 1.1.11, 3D depth sensors are now supported in addition to the previously usable multiple smartphone sensors. The idea for the app came from JARA-FIT scientists Prof. Christoph Stampfer and Dr. Sebastian Staacks from the II Institute of Physics at RWTH Aachen University. Together with PhD students and undergraduate students, the two scientists developed "phyphox" in 2016.
In a festive ceremony, JARA senior professor Knut Urban was awarded the Kavli Prize for Nanoscience. The former director of the Jülich Institute for Microstructure Research and the Ernst Ruska Center for Microscopy and Spectroscopy with Electrons already received the award in May 2020, together with Prof. Harald Rose (University of Ulm), Prof. Maximilian Haider (CEOS GmbH, Heidelberg) and Prof. Ondrej Krivanek (Nion Company, Seattle). The official award ceremony took place today in Oslo.
Tiny magnetic vortex structures in materials, called skyrmions, form a basis for innovative concepts for information processing with higher performance and less energy consumption. Furthermore, skyrmions influence the electronic and thermodynamic properties of a material. Jülich scientists, together with colleagues at RWTH Aachen University and the University of Uppsala in Sweden, have now experimentally demonstrated anti-skyrmions for the first time.
Memristive memory cells could revolutionize the energy efficiency of neuromorphic computers. In these computers, which are modeled on the functioning of the human brain, memristive cells function like artificial synapses. Researchers at Jülich have now summarized the physical principles and models in a comprehensive review article in the renowned journal "Advances in Physics". JARA-FIT member Prof. Rainer Waser played a key role in the research.
The JARA partners Forschungszentrum Jülich and RWTH Aachen University, in collaboration with the Leibniz Institute for Innovative Microelectronics (IHP), are pooling their complementary expertise in the field of semiconductor and quantum technology. In the future, they want to work together on the development of scalable semiconductor quantum bits within the framework of an open-ended cooperation, which will make quantum computers with millions of qubits possible.
A study on which scientists from the two JARA partners RWTH Aachen University and Forschungszentrum Jülich worked together with colleagues from the University of Cologne focused on the disorder of quantum chips. It turned out that this disorder has to be taken into account in the hardware design process so that the technology can work in the future.
The “NeuroSys – Neuromorphic Hardware for Artificial Intelligence Applications” research cluster will conduct research on such novel systems. By transferring fundamental research of the two JARA partners RWTH Aachen University and Forschungszentrum Jülich into neuromorphic components and algorithms, it seeks to develop a viable technological basis for applications in the field of artificial intelligence, in particular.
A new video from the JARA-FIT Institute for Quantum Information highlights the work and research of women in this exciting field of research. The research field is experiencing strong growth and offers many opportunities, for research and further development. With the video, the institute would like to inspire women in particular for this research field.
On February 14, 2022, researchers from the Cluster of Excellence Matter and Light for Quantum Information – ML4Q from the Universities of Bonn, Cologne, Aachen, and Forschungszentrum Jülich have organized a virtual taster afternoon on the fascinating topic of quantum computing.
The NEUROTEC project, which RWTH Aachen University and Forschungszentrum Jülich are jointly conducting under the umbrella of JARA, has now entered its second phase. Funded by the German Federal Ministry of Education and Research (BMBF), JARA-FIT Professor Rainer Waser wants to bring neuromorphic computers into application in the project.
Due to their special characteristics, topological insulators are ideally suited for being used in quantum computers. A scientific team at Forschungszentrum Jülich has now measured the properties of ultra-thin topological insulators for the first time using a special four-tip scanning tunneling microscope. This is an important step on the way to realizing topological quantum computers. JARA-FIT member Prof. Stafen Tautz and his institute were also involved in the investigations.
Porphyrin complexes have great potential for their use in future sensors and data storage devices. An international scientific team has now developed a model system to design such devices with unique functions and improved performance by stabilizing and controlling the spin and oxidation states in the complexes with nanoscale precision. JARA-FIT member Prof. Claus M. Schneider was among others involved in the research.
String structures are frequently found in nature, but the fact that they also appear on a nanoscale in alloys of iron and germanium was previously new. An international team around the two JARA-FIT scientists Prof. Stefan Blügel and Prof. Rafal Dunin-Borkowski has now been able to detect string-like structures of nanomagnetic vortices, so-called skyrmions. The new physical phenomenon could be a possible basis for innovative concepts in information technology.
The Stifterverband selected the ten best ideas from the fields of science, education and innovation in its anniversary initiative "Wirkung hoch 100". The app "phyphox" is among the ten finalists. The app turns your smartphone into a science lab. JARA-FIT scientists Prof. Christoph Stampfer and Dr. Sebastian Staacks developed the application in collaboration with students.
A team of 17 international researchers has discovered new properties in magnonics-based two-dimensional materials. The investigations and results can be used to further improve information technologies with regard to space, speed and energy consumption. Among others, the two JARA-FIT scientists Prof. Stefan Blügel and Prof. Thomas Brückel were involved in the research work.
Three new directors are strengthening research on innovative computer technologies at Jülich. Focusing on quantum computing and neuromorphic computing, Prof. Rami Barends, John Paul Strachlan and Emre Neftci moved to Jülich from California. In the future, the work of JARA members in the Fundamentals of Future Information Technology section will also benefit from their expertise.
A team led by Dr. Ruslan Temirov and JARA-FIT scientist Prof. Stefan Tautz has developed a novel scanning tunneling microscope that could significantly advance the study of quantum technology. In contrast to conventional microscopes, this one is equipped with a magnetic cooling system that enables almost vibration-free imaging and manipulation of matter at the atomic and molecular level at extremely low temperatures.
Above all, photographs should be razor-sharp, but weather influences such as rain or fog greatly affect the sharpness. A team of researchers from Jülich and partners in Italy and Germany has now developed a low-cost infrared detector that can be integrated into existing camera chips and smartphones. The detector can also improve the "vision" of autonomous driving cars. JARA-FIT scientist Prof. Detlev Grützmacher is significantly involved in the research.
Forschungszentrum Jülich and the University of Würzburg will together investigate the quantum phenomena of topological materials and the opportunities they present within quantum computing. With Professors Detlev Grützmacher, Stefan Tautz, Stefan Blügel and David DiVincenzo, four JARA-FIT scientists are involved in the project.
The smallest interactions with the environment can result in the loss of sensitive effects in quantum systems. Researchers from TU Delft, and JARA partners RWTH Aachen University and Forschungszentrum Jülich now describe an experiment in which a quantum system consisting of two coupled atoms behaves stably under electron bombardment. The experiment could provide an indication that quantum states in a quantum computer can also be realized more easily in certain cases than previously thought.
Quantum devices are extremely sensitive to their environment, which complicates modeling their behavior and developing their applications. For example, external influences can delay the response of quantum devices. A scientific team at the JARA-FIT Institute for Quantum Information has now succeeded in showing how responses can be more simply modeled as if there is no time delay, without introducing any error. Their results were recently published in the journal "Physical Review X".
Several characteristics of graphene make the material interesting for the design and development of spin qubits for future quantum computers. It is therefore not surprising that research on graphene-based quantum dots has been going on for more than a decade. A team of researchers led by JARA-FIT Director Prof. Christoph Stampfer has now made major progresses in the technology for confining and manipulating electrons in bilayer graphene quantum dots bringing the demonstration of graphene-based qubits within reach. The group has already published several papers on this topic in renowned journals.
Groundbreaking science needs the right environment and the right expertise. A good example of this is the JARA Institute for Quantum Information (JARA-IQI), whose home is RWTH Aachen University and Forschungszentrum Jülich. In this highly reputed technological environment, the scientists of the JARA-IQI Institute are researching and working on the realization of a quantum computer to meet the challenges of modern society. The new video illustrates which paths and approaches the researchers of the JARA-IQI Institute are pursuing.
Germany has long been among the world leaders in the race to develop a quantum computer. As part of the BMBF-funded QUASAR project, top-class research institutions, universities and companies now aim to jointly apply the results into practice. The goal is a semiconductor quantum processor made in Germany that is based on the "shuttling" of electrons and is to be achieved with technology available in Germany. Project coordinator is Prof. Hendrik Bluhm, director at the JARA Institute for Quantum Information.
A team around JARA-FIT member Prof. Stefan Tautz, together with colleagues from Marburg and Graz, has acquired electron orbital images with extremely high time resolution to track electrons in a chemical reaction in time and space. The investigations of the international research team not only contribute to the fundamental understanding of chemical reactions and electron transfer processes, but also open up future perspectives for the optimization of interfaces and nanostructures. The results were published in the journal Science.
Billed as the fastest computers of the future, expectations for quantum computers are correspondingly high. But there are still a number of hurdles to overcome before they can be realized. One of these challenges is the fragility of the quantum bits, or qubits for short. Until now, the various perturbations could only be eliminated with great effort. A team from the two JARA partners Forschungszentrum Jülich and RWTH Aachen University, led by JARA professor David DiVincenzo, has now presented a design for a circuit with passive error correction that would simplify the construction of quantum computers.
On February fourth, 2021, a consortium of 19 leading European research institutions announced the launch of a large-scale EU flagship initiative. The four-year Quantum Large-Scale Integration with Silicon (QLSI) project aims to scale silicon quantum technologies. The strong partners and ambitious project will lay the foundation for the industrial implementation of semiconductor quantum processors in the EU and put Europe at the forefront of the world in quantum information. One of the institutions involved in the project is the JARA partner Forschungszentrum Jülich.
Several new information technologies seem to have sprung from science fiction and impress with more performance in the smallest of spaces. One of these technologies is Ferroelectric Random Access Memory, or FeRAM for short. These components combine work and data storage in one. Now, a team of scientists from the JARA partners RWTH and Forschungszentrum Jülich have found a possible way to further miniaturize the FeRAM bits.
Numerous research teams around the world are working on optimizing hydrogen electrolysis in order to produce the coveted fuel as cost-effectively as possible and, above all, in a climate-neutral manner. A team of scientists from Jülich, Aachen and Berkeley has now discovered that an extremely thin layer of a catalyst material can double the activity for the water splitting reaction. Among others, the institute of JARA-FIT member Prof. Rainer Waser was significantly involved in the investigations.
The Kondo effect refers to an anomalous behavior of electrical resistance in metals with magnetic interference. Using scanning tunneling microscopy, the effect was first studied by US researchers in the late 1990s. Many of the studies based on this may have to be re-examined now that Jülich researchers have shown that the Kondo effect cannot be proven beyond doubt in this way. Instead, another phenomenon produces precisely the spectroscopic "fingerprint" that was previously attributed to the Kondo effect.
Skyrmions are small magnetic whirls that appear in certain combinations of materials. In data storage, they are regarded as the future information carriers. Scientists in Aachen, Kiel and Reykjavík found out that these so-called magnetic nanoknots can dissolve in two ways. JARA-FIT member Prof. Markus Morgenstern played a key role in the investigations.
To celebrate the 50th anniversary of Physical Review A, the science magazine has taken a look back and compiled a collection of milestone articles. The collection contains papers that have made important contributions to atomic, molecular and optical physics and quantum information. JARA Professor David DiVincenzo is represented twice in the collection.
Prof. Andreas Wallraff, an expert in the field of quantum information, is one of this year's recipients of a Helmholtz International Fellow Award from the Helmholtz Association of German Research Centres (HGF). The award enables the scientist from the ETH Zurich to expand an existing cooperation with scientists at Forschungszentrum Jülich.
The demands for modern materials, which are used in communication technology, for example, are very high. Efficiency, sustainability, space and cost savings are just a few of the keywords that are related to this. Meeting these demands requires the design of novel materials with specific characteristics. Scientists from Jülich and Berlin have now succeeded in bringing together artificial intelligence and nanotechnology to structure a material surface at the molecular level.
Mesocrystals consist of a three-dimensional periodic arrangement of nanoparticles or nanocrystals. The arrangement of the particles within the mesocrystal makes it possible to evoke different characteristics. To enable this modification, an international team has now investigated the size distribution of the nanocrystals. In addition to other experts, JARA-FIT member Prof. Thomas Brückel played a key role in the work.
The group of M. Morgenstern at RWTH Aachen University and the group of S. Lounis at Forschungszentrum Jülich, united in the Jülich-Aachen Research Alliance, discovered that single foreign atoms halt the motion of magnetic vortex cores that consists of about 10.000 atoms. They studied the resulting interaction in detail with the help of a dedicated scanning tunneling microscope developed in Aachen. The microscope enables imaging and manipulating of the magnetic nanostructures. The surprising novel result of a single atom stopper leads to novel design criteria for modern computer memories and is published in the well reputed journal Nature Communications.
At the beginning of February, top-class scientists met in Chennai, India, for an Indo-German symposium. The event focused on quantum sciences and technologies. In lectures and discussions, the experts exchanged views on various aspects of the topic.
The human brain is still the most powerful and efficient computer in the world. Multiple processes proceed in parallel and the organ requires only a very small amount of energy. Not surprisingly, modern science wants to transfer the qualities of the brain to novel computer architectures. In the NEUROTEC project, under the umbrella of JARA, scientists from RWTH Aachen University and Forschungszentrum Jülich are working on these so-called neuromorphic computer systems.
Sometimes it's the little things that make the difference. Especially in the world at the nanometer scale. Prof Markus Ternes is a scientist and lecturer at the two JARA partners RWTH Aachen University and Forschungszentrum Jülich. His research area is the structure and dynamics of atomic and molecular model systems. Together with colleagues from Strasbourg and San Sebastián, Ternes has now refined scanning tunneling microscopy for his research in order to explore the magnetic structures of complex materials at the atomic scale. Further information in german.
The Association for the Promotion of MINT Education (MNU) awarded the Archimedes Prize to the physics app "phyphox". JARA-FIT scientists Prof. Christoph Stampfer and Dr. Sebastian Staacks, both from the II Physics Institute of RWTH Aachen University, developed the app in cooperation with PhD students and students of the institute.
The Materials Research Society (MRS) elected JARA Professor Matthias Wuttig as MRS Fellow 2019. For the fourth time a German scientist will receive this honour. With this award, MRS honors the physicist's outstanding and groundbreaking contributions to the advancement of phase-change materials, including unraveling their unique bonding mechanism, unconventional transport properties and unusual kinetics.
Researchers from Jülich, Poland and Japan have discovered and analysed a new many-body state in an iron crystal. Its existence sheds new light on the physics of the interaction of conducting electrons and magnons which are excitations in magnetic systems. The JARA-FIT scientists Prof. Stefan Blügel and Prof. Claus Michael Schneider are significantly involved in the investigations.
The European Research Council (ERC) has announced the list of new ERC Consolidator Grant holders. For the second time, JARA-FIT scientist Prof. Christoph Stampfer has been awarded an ERC Grant. After an ERC Starting Grant in 2011, the physicist will now receive a Consolidator Grant. The funding amounts to up to two million euros over a period of five years.
The JARA-FIT Annual Report 2017 gives an overview about the different occurrences like events, honours and research results. The reports also contains a current list of JARA members and involved institutes. Research reports give a summery about the work an development of the section.
The research team led by Dr. Gerard Verbiest and JARA-FIT scientist Prof. Christoph Stampfer at the Physics Department at the RWTH Aachen University, discovered a new possibility for ultrasound detection. The physicists fabricated a graphene resonator on a silicon substrate in a way that the device could be mounted onto an ultrasound transducer.
The meteorite Bishunpur, which fell to Earth in 1895 in the Indian Indian state of Uttar Pradesh, could shed light on the magnetism at the beginning of the universe. In order to unravel the secrets of the meteorite, scientists at Research Centre Jülich, together with experts from England and Norway, have investigated the material using electron holography.
The junior researcher Dr. Tobias Beck of RWTH Aachen was just inducted into the "Junges Kolleg" of the North Rhine-Westphalian Academy of Sciences, Humanities and the Arts.
Scientists JARA have discovered a phenomenon similar to the laser effect with which the structure of organic molecules can be examined at previously unmatched levels of precision. In contrast to a laser, this "raser" (radiowave amplification by stimulated emission of radiation) is pumped with parahydrogen and does not operate at light frequencies, instead oscillating continuously at various radio frequencies of around 100 kHz. A precise fingerprint of the molecular structure can thus be obtained.
The QuTech institute in Delft as well as Forschungszentrum Jülich and RWTH Aachen University, both partners of the Aachen Jülich Research Alliance (JARA), have intensified their collaboration through an official agreement.
Quantum computers are viewed as ultrafast computers of the future. The Scalable Solid State Quantum Computing project aims to establish the conditions for future multi-qubit systems. In order to realize such systems with several hundred qubits, new technologies are required so that the qubits can be precisely controlled. Forschungszentrum Jülich, RWTH Aachen University, and the Karlsruhe Institute of Technology are all involved in the project, which is being provided with € 6 million in funding by the Helmholtz Association.
When the stream flows in portions: Experiments at RWTH Aachen University and Forschungszentrum Jülich provide new insights into the quantum properties of graphene as a carbon material.
Utilizing the magnetic moment (spin) of an electron leads to a faster and more energy efficient processing of bits and bytes than within the actual Si-based processors. So far, manipulation experiments of the spin revealed signals which are much too small for any practical application. A possible reason for the unfavorable efficiency has now...
In “Magnetic Skyrmions for Future Nanospintronic Devices”, or “MAGicSky” for short, scientists from France, Germany, Great Britain and Switzerland are pursuing an innovative concept for novel computer components based on magnetic vortices known as skyrmions.
The overheating of computer chips is a major obstacle to the development of faster and more efficient computers and mobile phones. One promising remedy for this problem could be a class of materials first discovered just a few years ago: topological insulators.