JARA-FAME scientists on the search for dark matter
For the first time, scientists have applied a promising new method to search for dark matter particles in a particle accelerator. The method used by researchers in the international JEDI collaboration is based on the observation of the spin polarization of a particle beam in the Jülich storage ring COSY. They published their results today in the renowned journal Physical Review X.
About 80 % of the matter in the universe consists of an unknown and invisible substance. This “dark matter” had already been postulated about 90 years ago. “This was the only way to reconcile the velocity distribution of visible matter within galaxies with existing knowledge,” explains Jörg Pretz (JARA-FAME), one of the study’s co-authors, who is also deputy director at Forschungszentrum Jülich’s Nuclear Physics Institute and professor at RWTH Aachen University. “A ‘dark’ form of matter, previously unobserved, must additionally stabilize the galaxies.”
Physicists have been searching for this matter since the 1930s. Science has no shortage of theories, but no one has yet succeeded in actually detecting dark matter. “This is because the nature of dark matter is still completely unclear,” says Dr. Volker Hejny, who is also from Jülich’s Nuclear Physics Institute and, like his colleague Jörg Pretz, is a member of the international JEDI collaboration that conducted the experiment. JEDI stands for Jülich Electric Dipole moment Investigations and scientists involved in the collaboration have been working on the measurement of the electric dipole moments of charged particles since 2011. “Dark matter is not visible and has so far only revealed itself indirectly through its gravity. Its effect is comparatively tiny, which is why it only really becomes apparent in the case of enormously large masses – such as entire galaxies."
The full press release on the website of Forschungszentrum Jülich: https://www.fz-juelich.de/en/news/archive/press-release/2023/search-for-dark-matter-at-julich